P-adic modular form - définition. Qu'est-ce que P-adic modular form
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est P-adic modular form - définition


P-adic modular form         
In mathematics, a p-adic modular form is a p-adic analog of a modular form, with coefficients that are p-adic numbers rather than complex numbers. introduced p-adic modular forms as limits of ordinary modular forms, and shortly afterwards gave a geometric and more general definition.
Modular form         
ANALYTIC FUNCTION ON THE UPPER HALF-PLANE WITH A CERTAIN BEHAVIOR UNDER THE MODULAR GROUP
Modular forms; Elliptic modular form; Modular function; Level of a modular form; Weight of a modular form; Nebentypus character; Nebentype character; Q-expansion; Modular form and modular function; Modular function and modular form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory.
P-adic L-function         
In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic (where p is a prime number). For example, the domain could be the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbers Qp or its algebraic closure.